If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x+23=0
a = 3; b = -24; c = +23;
Δ = b2-4ac
Δ = -242-4·3·23
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-10\sqrt{3}}{2*3}=\frac{24-10\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+10\sqrt{3}}{2*3}=\frac{24+10\sqrt{3}}{6} $
| 5x(-2)=-10 | | x+18=46 | | -9.8=-w/2.3 | | 19,5x=473,9+x | | -9.8=-w/2.4 | | 2/3x+1=17/15x+3 | | 7x+3-3X=3x-9 | | 25x^2+16x+32=0 | | 4(3x+2)=3x-38 | | 4(y+20)=100 | | 8x-7=6+2(10x-3 | | 2a-5=8a-1 | | 10y+3-3y=28+2y | | 2(7x+5=3(2x+7)+4(2x-1) | | 4x+3=x-21 | | y-12/3=7 | | 10x-x=449 | | X=4x100 | | 30+y/2=55 | | (5u+5)/6+(5u+10)/9+2=7 | | 7q+5/3=4q-30/6 | | -10=4b | | 15+2y=25 | | 2x-3/2x+1=3x+1/3x-1 | | y/3+21=10 | | 18=3⋅x | | P=8x+3 | | x/5+25=15 | | x/2=31/2 | | 2x+5=-7+40 | | 5x+2=3X812 | | 8x-10x+40=0 |